Mathematics

QUADRATIC SURD

1. If $x=3+2 \sqrt{2}$, then find $x+\frac{1}{x}$.

Ans.

$$
\begin{aligned}
& x=3+2 \sqrt{2} \\
& \text { or, } \begin{aligned}
\frac{1}{x} & =\frac{1}{3+2 \sqrt{2}} \\
& =\frac{1 .(3-2 \sqrt{2})}{(3+2 \sqrt{2)}(3-2 \sqrt{2)}} \\
& =\frac{3-2 \sqrt{2}}{(3)^{2}-(2 \sqrt{2})^{2}} \\
& =\frac{3-2 \sqrt{2}}{9-4.2} \\
& =\frac{3-2 \sqrt{2}}{9-8} \\
& =3-2 \sqrt{2} \\
\therefore x+\frac{1}{x} & =(3+2 \sqrt{2})+(3-2 \sqrt{2})=6
\end{aligned}
\end{aligned}
$$

2. Simplify : $\frac{3 \sqrt{20}+2 \sqrt{28}+\sqrt{12}}{5 \sqrt{45}+2 \sqrt{175}+\sqrt{75}}$

Ans. $\quad \frac{3 \sqrt{20}+2 \sqrt{28}+\sqrt{12}}{5 \sqrt{45}+2 \sqrt{175}+\sqrt{75}}$

$$
\begin{aligned}
& =\frac{3 \sqrt{2^{2} \times 5}+2 \sqrt{2^{2} \times 7}+\sqrt{2^{2} \times 3}}{5 \sqrt{3^{2} \times 5}+2 \sqrt{5^{2} \times 7}+\sqrt{5^{2} \times 3}} \\
& =\frac{6 \sqrt{5}+4 \sqrt{7}+2 \sqrt{3}}{15 \sqrt{5}+10 \sqrt{7}+5 \sqrt{3}} \\
& =\frac{2(3 \sqrt{5}+2 \sqrt{7}+\sqrt{3})}{5(3 \sqrt{5}+2 \sqrt{7}+\sqrt{3})}=\frac{2}{5}
\end{aligned}
$$

3. Show that why is $(-5+\sqrt{2})$ not the conjugate surd of the mixed quadratic surd $(5+\sqrt{2})$.

Ans. $(-5+\sqrt{2})$ is not the conjugate surd of the mixed quadratic surd $(5+\sqrt{2})$ because, $(5+\sqrt{2})+(-5+\sqrt{2})=\not \subset+\sqrt{2}-5 /+\sqrt{2}=2 \sqrt{2}$, which is not a rational number. (Here condition is that sum and product both are rational numbers.)
4. Subtract $(5+\sqrt{2}+\sqrt{7})$ from the sum of $(-5+\sqrt{7})$ and $(\sqrt{7}+\sqrt{2})$ and find the value of subtraction.

Ans. $\quad\{(-5+\sqrt{7})+(\sqrt{7}+\sqrt{2})\}-(5+\sqrt{2}+\sqrt{7})$

$$
\begin{aligned}
& =-5+\sqrt{7}+\sqrt{\nrightarrow}+\sqrt{2}-5-\sqrt{2}-\sqrt{\nmid} \\
& =-10+\sqrt{7} \text { or, } \sqrt{7}-10
\end{aligned}
$$

